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ABSTRACT

A conjecture of Kalai and Eckhoff that the face vector of an arbitrary

flag complex is also the face vector of some particular balanced complex

is verified.

1. Introduction

We begin by introducing the main result. Precise definitions and statements of

some related theorems are deferred to later sections.

The main object of our study is the class of flag complexes. A simplicial

complex is a flag complex if all of its minimal non-faces are two element sets.

Equivalently, if all of the edges of a potential face of a flag complex are in the

complex, then that face must also be in the complex.

Flag complexes are closely related to graphs. Given a graph G, define its

clique complex C = C(G) as the simplicial complex whose vertex set is the

vertex set of G, and whose faces are the cliques of G. The clique complex of any

graph is itself a flag complex, as for a subset of vertices of a graph to not form

a clique, two of them must not form an edge. Conversely, any flag complex is

the clique complex of its 1-skeleton.

The Kruskal–Katona theorem [6, 5] characterizes the face vectors of simplicial

complexes as being precisely the integer vectors whose coordinates satisfy some

particular bounds. The graphs of the “rev-lex” complexes which attain these
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bounds invariably have a clique on all but one of the vertices of the complex,

and sometimes even on all of the vertices.

Since the bounds of the Kruskal–Katona theorem hold for all simplicial com-

plexes, they must in particular hold for flag complexes. We might expect that

flag complexes which do not have a face on most of the vertices of the com-

plex will not come that close to attaining the bounds of the Kruskal–Katona

theorem.

One way to force tighter bounds on face numbers is by requiring the graph

of the complex to have a chromatic number much smaller than the number of

vertices. The face vectors of simplicial complexes of a given chromatic number

were classified by Frankl, Füredi, and Kalai [4].

Kalai (unpublished; see [8, p. 100]) and Eckhoff [1] independently conjectured

that if the largest face of a flag complex contains r vertices, then it must satisfy

the known bounds (see [4]) for complexes of chromatic number r, even though

the flag complex may have chromatic number much larger than r. We prove

their conjecture.

Theorem 1.1: For any flag complex C, there is a balanced complex C′ with

the same face vector as C.

Our proof is constructive. The Frankl–Füredi–Kalai [4] theorem states that

an integer vector is the face vector of a balanced complex if and only if it is

the face vector of a colored “rev-lex” complex. This happens if and only if it

satisfies certain bounds on consecutive face numbers. Given a flag complex,

for each i, we construct a colored “rev-lex” complex with the same number of

i-faces and (i + 1)-faces as the flag complex, thus showing that all the bounds

are satisfied.

The structure of the paper is as follows. Section 2 contains basic facts and

definitions related to simplicial complexes. In Section 3, we discuss the Kruskal–

Katona theorem and the Frankl–Füredi–Kalai theorem, and lay the foundation

for our proof. Finally, Section 4 gives our proof of the Kalai–Eckhoff conjecture.

2. Preliminaries on simplicial complexes

In this section, we discuss some basic definitions related to simplicial complexes.

Recall that a simplicial complex ∆ on a vertex set V is a collection of

subsets of V such that, (i) for every v ∈ V , {v} ∈ ∆ and (ii) for every B ∈ ∆,
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if A ⊂ B, then A ∈ ∆. The elements of ∆ are called faces. The maximal faces

(under inclusion) are called facets.

For a face F of a simpicial complex ∆, the dimension of F is defined as

dim F = |F | − 1. The dimension of ∆, dim∆, is defined as the maximum

dimension of the faces of ∆. A complex ∆ is pure if all of its facets are of the

same dimension.

The i-skeleton of a simplicial complex ∆ is the collection of all faces of ∆ of

dimension ≤ i. In particular, the 1-skeleton of ∆ is its underlying graph.

It is sometimes useful in inductive proofs to consider certain subcomplexes of

a given simplicial complex, such as its links.

Definition 2.1: Let ∆ be a simplicial complex and F ∈ ∆. The link of F ,

lk∆(F ), is defined as

lk∆(F ) := {G ∈ ∆: F ∩ G = ∅, F ∪ G ∈ ∆}.

The link of a face of a simplicial complex is itself a simplicial complex. It will

be convenient to define the notion of a link of a vertex of a graph.

Definition 2.2: The link of a vertex v in a graph G, denoted lkG(v), is the

induced subgraph of G on all vertices adjacent to v.

Note that lkG(v) coincides with the 1-skeleton of the link of {v} in the clique

complex of G.

Next we discuss a special class of simplical complexes known as flag com-

plexes.

Definition 2.3: A simplicial complex ∆ on a vertex set V is a flag complex if

all of its minimal non-faces are two element sets. A non-face of ∆ is a subset

A ⊆ V such that A 6∈ ∆. A non-face A is minimal if, for all proper subsets

B ⊂ A, B ∈ ∆.

In the following, we refer to the chromatic number of a simplicial complex as

the chromatic number of its 1-skeleton in the usual graph theoretic sense.

We also need the notion of a balanced complex, as introduced and studied in

[7].

Definition 2.4: A simplicial complex ∆ of dimension d− 1 is balanced if it has

chromatic number d.
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Note that the chromatic number of a simpicial complex of dimension d − 1

must be at least d, as it has some face with d vertices, all of which are adjacent,

so coloring that face takes d colors. A balanced complex is then one whose

chromatic number is no larger than it has to be.

Not all simplicial complexes are balanced complexes. For example, a pentagon

(five vertices, five edges, and one empty face) is not a balanced complex, because

it has chromatic number three but dimension only one.

In this paper, we study the face numbers of flag complexes.

Definition 2.5: The i-th face number of a simplicial complex C, denoted ci(C),

is the number of faces in C containing i vertices. These are also called i-faces

of C. If dimC = d − 1, the face vector of C is the vector X

c(C) = (c0(C), c1(C), . . . , cd(C)).

In particular, for any non-empty complex C, we have c0(C) = 1, as there is

a unique empty set of vertices, and it is a face of C.

Since flag complexes are the same as clique complexes of graphs, it is some-

times convenient to talk about face numbers in the language of graphs.

Definition 2.6: The i-th face number of a graph is the i-th face number of its

clique complex. Likewise, the clique vector of a graph is the face vector of its

clique complex.

The face numbers defined here are shifted by one from what is often used for

simplicial complexes. This is done because we are primarily concerned with flag

complexes, or equivalently, clique complexes of graphs, where it is more natural

to index i as the number of vertices in a clique of the graph, following Eckhoff

[3].

The graph concept corresponding to the dimension of a simplicial complex is

the clique number.

Definition 2.7: The clique number of a graph is the number of vertices in its

largest clique.

Note that the clique number of a graph is one larger than the dimension of

its clique complex.
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3. The Kruskal-Katona and Frankl–Füredi-Kalai theorems

For the general case of simplicial complexes, the question of which face vectors

are possible is answered by the Kruskal–Katona theorem [6, 5]. Stating the

theorem requires the following lemma.

Lemma 3.1: Given any positive integers m and k, there is a unique s and

unique nk > nk−1 > · · · > nk−s ≥ k − s > 0 such that

m =

(

nk

k

)

+

(

nk−1

k − 1

)

+ · · · +

(

nk−s

k − s

)

.

The representation described in the lemma is called the k-canonical represen-

tation of m.

Theorem 3.2 (Kruskal–Katona): For a simplicial complex C, let

m = ck(C) =

(

nk

k

)

+

(

nk−1

k − 1

)

+ · · · +

(

nk−s

k − s

)

be the k-canonical representation of m. Then

ck+1(C) ≤

(

nk

k + 1

)

+

(

nk−1

k

)

+ · · · +

(

nk−s

k − s + 1

)

.

Furthermore, given a vector (1, c1, c2, . . . , ct) which satisfies this bound for all

1 ≤ k < t, there is some complex that has this vector as its face vector.

To construct the complexes which demonstrate that the bound of the Kruskal-

Katona theorem is attained, we need the reverse-lexicographic (“rev-lex”) order.

To define the rev-lex order of i-faces of a simplicial complex on n vertices, we

start by labelling the vertices 1, 2, . . . . Let N be the natural numbers, let A and

B be distinct subsets of N with |A| = |B| = i, and let A∇B be the symmetric

difference of A and B.

Definition 3.3: For A, B ⊂ N with |A| = |B|, we say that A precedes B in the

rev-lex order if max(A∇B) ∈ B, and B precedes A otherwise.

For example, {2, 3, 5} precedes {1, 4, 5}, as 3 is less than 4, and {3, 4, 5}

precedes {1, 2, 6}.

Definition 3.4: The rev-lex complex on m i-faces is the pure complex whose

facets are the first m i-sets possible in rev-lex order. This complex is denoted

Ci(m).
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We can also specify more than one number in the face vector. For two se-

quences i1 < · · · < ir and (m1, . . . , mr), let

C = Ci1(m1) ∪ Ci2(m2) ∪ · · · ∪ Cir
(mr).

A standard way to prove the Kruskal–Katona theorem involves showing that

if the numbers m1, . . . , mr satisfy the bounds of the theorem, then the complex

C has exactly mj ij-faces for all j ≤ r and no more. In this case, we refer to C

as the rev-lex complex on m1 i1-faces, . . . , mr ir-faces.

For example, if the complex C has
(

9

3

)

+
(

6

2

)

= 99 3-faces, then the Kruskal-

Katona theorem says that it can have at most
(

9

4

)

+
(

6

3

)

= 146 4-faces. The

rev-lex complex on 99 3-faces and 146 4-faces gives an example showing that

this bound is attained.

The 1-skeleton of the rev-lex complex that gives the example for the existence

part of the Kruskal–Katona theorem always has a clique as large as possible

without exceeding the number of edges allowed. It also has a chromatic number

of either the number of non-isolated vertices or one less than this, as the edges

form a clique on all of the non-isolated vertices except possibly for the last one.

It turns out that if we require a much smaller chromatic number, we can get

a much smaller bound. To take an extreme example, if c3(C) = 1140, then

the Kruskal–Katona theorem requires that c4(C) ≤ 4845. But if we require the

complex C to be 3-colorable, then we trivially cannot have any faces on four

vertices, and c4(C) = 0.

We could ask what face vectors occur for r-colorable complexes for a given

r. This was solved by Frankl, Füredi, and Kalai [4]. In order to explain their

result, we need the concept of a Turán graph.

Definition 3.5: The Turán graph Tn,r is the graph obtained by partitioning n

vertices into r parts as evenly as possible, and making two vertices adjacent

exactly if they are not in the same part. Define
(

n

k

)

r
to be the number of

k-cliques of the graph Tn,r.

The structure of the Frankl–Füredi–Kalai theorem [4] is similar to that of

the Kruskal–Katona theorem, beginning with a canonical representation of the

number of faces.
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Lemma 3.6: Given positive integers m, k, and r with r ≥ k, there are unique

s, nk, nk−1, . . . , nk−s such that

m =

(

nk

k

)

r

+

(

nk−1

k − 1

)

r−1

+ · · · +

(

nk−s

k − s

)

r−s

,

nk−i −
⌊nk−i

r−i

⌋

> nk−i−1 for all 0 ≤ i < s, and nk−s ≥ k − s > 0.

This expression is called the (k, r)-canonical representation of m.

Theorem 3.7 (Frankl–Füredi–Kalai): For an r-colorable complex C, let

m = ck(C) =

(

nk

k

)

r

+

(

nk−1

k − 1

)

r−1

+ · · · +

(

nk−s

k − s

)

r−s

be the (k, r)-canonical representation of m. Then

ck+1(C) ≤

(

nk

k + 1

)

r

+

(

nk−1

k

)

r−1

+ · · · +

(

nk−s

k − s + 1

)

r−s

.

Furthermore, given a vector (1, c1, c2, . . . ct) which satisfies this bound for all

1 ≤ k < t, there is some r-colorable complex that has this vector as its face

vector.

The examples which show that this bound is sharp come from a colored

equivalent of the rev-lex complexes of the Kruskal–Katona theorem:

Definition 3.8: A subset A ⊂ N is r-permissible if, for any two a, b ∈ A, r

does not divide a − b. The r-colored rev-lex complex on m i-faces is the

pure complex whose facets are the first m r-permissible i-sets in rev-lex order.

This complex is denoted Cr
i (m).

The complex Cr
i (n) is r-colorable because we can color all vertices which are

i modulo r with color i.

As with the uncolored case, we can define a rev-lex complex with specified

face numbers of more than one dimension. For two sequences i1 < · · · < is

and (m1, . . . , ms), let C = Cr
i1

(m1) ∪ Cr
i2

(m2) ∪ · · · ∪ Cr
is

(ms). The proof of

Theorem 3.7 involves showing that if the numbers m1, . . . , mr satisfy the bounds

of the theorem, then the complex C has exactly mj ij-faces and no more. In

this case, we refer to C as the r-colored rev-lex complex on m1 i1-faces, . . . ,

mr ir-faces. This complex is likewise r-colorable with one color for each value

modulo r.
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In the case of flag complexes, the face numbers of the complex must still

follow the bounds imposed by the chromatic number by Theorem 3.7. Still,

there are graphs whose clique number is far smaller than the chromatic number,

and having no large cliques seems to force tighter restrictions on the clique

vector than the chromatic number alone. In particular, given a graph G of

clique number n, we must have ci(G) = 0 for all i > n, while the bound from

the chromatic number and Theorem 3.7 may be rather large. Note that the

chromatic number must be at least the size of the largest clique, as any two

vertices in a maximum size clique must have different colors.

It has been conjectured by Kalai (unpublished) and Eckhoff [1] that, given

a graph G with clique number r, there is an r-colorable complex with exactly

the same face numbers as the clique complex of the graph. Their conjecture

generalizes the classical Turán theorem from graph theory, which states that

among all triangle-free graphs on n vertices, the Turán graph Tn,2 has the most

edges [9]. The goal of the following section is to verify Theorem 1.1, proving

their conjecture.

The reverse inclusion does not hold. For example, the vector (1, 4, 5, 1) in the

case of r = 3 satisfies the bounds of the Frankl–Füredi–Kalai theorem, so it is

the face vector of a balanced complex. However, it is not the face vector of a

flag complex: a graph with four vertices and five edges must be one edge short

of a clique on four vertices, which has two triangles, not one.

4. Proof of the Kalai-Eckhoff conjecture

Fix a graph G with cr+1(G) = 0 and fix k ≥ 0. We start by showing that there

is an r-colorable complex C with ck(G) = ck(C) and ck+1(G) = ck+1(C) (see

Lemma 4.1 below).

The case k = 1 of the lemma is given by Turán’s theorem [9]. It was gen-

eralized by Zykov [10] to state that if G is a graph on n vertices of chromatic

number r, then ci(G) ≤
(

n
i

)

r
. The case k = 2 was proven by Eckhoff [2]. A

subsequent paper of Eckhoff [3] established a bound on ci(G) in terms of c2(G)

for all 2 ≤ i. All of these results are special cases of our Theorem 4.2 and proven

independently below.
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Lemma 4.1: If G is a graph with cr+1(G) = 0 and k is a nonnegative integer,

then there is some r-colorable complex C with ck(C) = ck(G) and ck+1(C) =

ck+1(G).

Proof. We use induction on k. For the base case, if k = 0, take C to be

a complex with the same number of vertices as G and no edges, so that all

vertices can be the same color.

Otherwise, assume that the lemma holds for k − 1, and we need to prove it

for k. The approach for this is to use induction on ck+1(G). For the base case,

if ck+1(G) = 0, then take C to be a disjoint union of ck(G) k-faces.

For the inductive step, suppose that ck+1(G) > 0. Let v0 be the vertex of G

contained in the most cliques of k + 1 vertices; in case of a tie, arbitrarily pick

some vertex tied for the most to label v0. Let the vertices of G not adjacent to

v0 be v1, v2, . . . vs.

Given a graph G and a vertex v, there is a bijection between k-cliques of lkG(v)

and (k +1)-cliques of G containing v, where a k-clique of lkG(v) corresponds to

the (k+1)-clique of G containing the k vertices of the k-clique of lkG(v) together

with v. Then the number of (k + 1)-cliques of G containing v is ck(lkG(v)). In

particular, the choice of v0 gives ck(lkG(v0)) ≥ ck(lkG(v′)) for every vertex

v′ ∈ G.

Define graphs G0, G1, . . . , Gs+1 by setting Gi+1 = G− {v0, v1, . . . vi} for 0 ≤

i ≤ s and G0 = G. Clearly, G = G0 ⊃ G1 ⊃ · · · ⊃ Gs+1. Further, Gs+1 is the

induced subgraph on the vertices adjacent to v0, which is lkG(v0).

Since cr+1(G) = 0, cr(lkG(v0)) = 0, for, otherwise, the r vertices of an r-

clique of lkG(v0) together with v0 would form an (r + 1)-clique of G. Then

cr(Gs+1) = 0. Further, since ck+1(G) > 0, and v0 is contained in the most

(k + 1)-cliques of any vertex of G, v0 is contained in at least one (k + 1)-clique,

and so ck(lkG(v0)) > 0. Since v is contained in at least one (k + 1)-clique of G,

we have ck+1(Gs+1) < ck+1(G).

Then by the second inductive hypothesis, there is some (r − 1)-colorable

complex Cs+1 such that ck(Cs+1) = ck(Gs+1) and ck+1(Cs+1) = ck+1(Gs+1).

Since given any (r − 1)-colorable complex, there is an (r − 1)-colorable rev-lex

complex with the same face numbers, we can take Cs+1 to be a rev-lex complex.

Further, since ck+1(Cs+1) and ck(Cs+1) only force a lower bound on ck−1(Cs+1),

but not an upper bound, we can take ck−1(Cs+1) ≥ ck−1(G).



162 ANDREW FROHMADER Isr. J. Math.

Let ck(lkGi
(vi)) = ai and ck−1(lkGi

(vi)) = bi. Since Gi+1 = Gi − vi,

ck+1(Gi)−ck+1(Gi+1) = ai and ck(Gi)−ck(Gi+1) = bi. We have ck(lkG(v0)) ≥

ck(lkG(vi)) by the choice of v0. We also have ck(lkG(vi)) ≥ ck(lkGi
(vi)) since

Gi ⊂ G. Thus

ck(Cs+1) = ck(Gs+1) = ck(lkG(v0)) ≥ ck(lkG(vi)) ≥ ck(lkGi
(vi)) = ai.

Also, since lkGi
(vi) ⊂ Gi ⊂ G, we have

bi = ck−1(lkGi
(vi)) ≤ ck−1(Gi) ≤ ck−1(G) ≤ ck−1(Cs+1).

Given an r-colored complex Ci+1 such that ck+1(Ci+1) = ck+1(Gi+1),

ck(Ci+1) = ck(Gi+1), and the induced subcomplex of Ci+1 on the vertices of

the first r − 1 colors is isomorphic to Cs+1, we want to construct a complex Ci

such that ck+1(Ci) = ck+1(Gi), ck(Ci) = ck(Gi), and the induced subcomplex

of Ci on the vertices of the first r − 1 colors is isomorphic to Cs+1.

Construct Ci from Ci+1 by adding a new vertex v′i of color r. Let the (k+1)-

faces containing v′i consist of each of the first ai k-faces in rev-lex order of Cs+1

together with v′i, and let the k-faces containing v′i consist of each of the first bi

(k − 1)-faces in rev-lex order of Cs+1 together with v′i.

If this construction can be done, then ck+1(Ci) is the number of (k +1)-faces

of Ci containing v′i plus the number of (k + 1)-faces of Ci not containing v′i,

which are ai and ck+1(Ci+1), respectively. Then

ck+1(Ci) = ck+1(Ci+1) + ai = ck+1(Gi+1) + ai = ck+1(Gi).

Likewise, we have

ck(Ci) = ck(Ci+1) + bi = ck(Gi+1) + bi = ck(Gi).

Further, it is clear from the construction that the induced subcomplex on ver-

tices of the first r − 1 colors is unchanged from Ci+1, and hence is isomorphic

to Cs+1.

In order to show that the construction is possible, we must show that

ck(Cs+1) ≥ ai and ck−1(Cs+1) ≥ bi, and that it is possible for an (r − 1)-

colored complex C to have exactly ck(C) = ai and ck−1(C) = bi. We have

already shown the first two of these.

For the third, since Gi ⊂ G, we have cr+1(Gi) ≤ cr+1(G) = 0, and so

cr+1(Gi) = 0. Then cr(lkGi
(vi)) = 0. We also have ck(lkGi

(vi)) = ai and

ck−1(lkGi
(vi)) = bi by the definitions of ai and bi. Then by the first inductive

hypothesis, there is some (r − 1)-colored complex C′

i such that ck(C′

i) = ai and
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ck−1(C
′

i) = bi. Then we can take C′

i to be the (r − 1)-colored rev-lex complex

with ck(C′

i) = ai and ck−1(C
′

i) = bi. Since Cs+1 is an (r − 1)-colored rev-lex

complex with ck(Cs+1) ≥ ai and ck−1(Cs+1) ≥ bi, C′

i ⊂ Cs+1, and we can

choose the link of v′i in Ci to be C′

i.

We can repeat this construction for each 0 ≤ i ≤ s to start with Cs+1, then

construct Cs, then Cs−1, and so forth, until we have an r-colored complex C0

such that ck(C0) = ck(G) and ck+1(C0) = ck+1(G). This completes the induc-

tive step for the induction on ck+1(G), which in turn completes the inductive

step for the induction on k.

We are now ready to prove the result which immediately implies Theorem 1.1,

and hence establish the Kalai–Eckhoff conjecture, by taking r to be the clique

number of G.

Theorem 4.2: For every graph G with cr+1(G) = 0, there is an r-colorable

complex C such that ci(C) = ci(G) for all i.

Proof. By Lemma 4.1, we can pick an r-colored complex Ci such that ci(Ci) =

ci(G) and ci+1(Ci) = ci+1(G) for all i ≥ 1. By Theorem 3.7, we can take Ci

to be the rev-lex complex on ci(G) i-faces and ci+1(G) (i + 1)-faces, and then
⋃r

i=1
Ci will have the desired face numbers.
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